Pharmacological targeting the ATR–CHK1–WEE1 axis involves balancing cell growth stimulation and apoptosis

نویسندگان

  • Joyce P.Y. Mak
  • Wing Yu Man
  • Hoi Tang Ma
  • Randy Y.C. Poon
چکیده

The ATR-CHK1-WEE1 kinase cascade's functions in the DNA damage checkpoints are well established. Moreover, its roles in the unperturbed cell cycle are also increasingly being recognized. In this connection, a number of small-molecule inhibitors of ATR, CHK1, and WEE1 are being evaluated in clinical trials. Understanding precisely how cells respond to different concentrations of inhibitors is therefore of paramount importance and has broad clinical implications. Here we present evidence that in the absence of DNA damage, pharmacological inactivation of ATR was less effective in inducing mitotic catastrophe than inhibition of WEE1 and CHK1. Small-molecule inhibitors of CHK1 (AZD7762) or WEE1 (MK-1775) induced mitotic catastrophe, as characterized by dephosphorylation of CDK1(Tyr15), phosphorylation of histone H39(Ser10), and apoptosis. Unexpectedly, partial inhibition of WEE1 and CHK1 had the opposite effect of accelerating the cell cycle without inducing apoptosis, thereby increasing the overall cell proliferation. This was also corroborated by the finding that cell proliferation was enhanced by kinase-inactive versions of WEE1. We demonstrated that these potential limitations of the inhibitors could be overcome by targeting more than one components of the ATR-CHK1-WEE1 simultaneously. These observations reveal insights into the complex responses to pharmacological inactivation of the ATR-CHK1-WEE1 axis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pharmacological inactivation of CHK1 and WEE1 induces mitotic catastrophe in nasopharyngeal carcinoma cells

Nasopharyngeal carcinoma (NPC) is a rare but highly invasive cancer. As radiotherapy is the primary treatment for NPC, this offers a rationale to investigate if uncoupling the DNA damage responses can sensitize this cancer type. The G2 DNA damage checkpoint is controlled by a cascade of protein kinases: ATM/ATR, which phosphorylates CHK1/CHK2, which in turn phosphorylates WEE1. A number of smal...

متن کامل

WEE1 inhibition targets cell cycle checkpoints for triple negative breast cancers to overcome cisplatin resistance

Cisplatin is one of the most commonly used therapeutic drugs for cancer therapy, yet prolonged cisplatin treatment frequently results in drug resistance. To enhance therapeutic effect of cisplatin, we conducted a high throughput screening using a kinase library containing 704 kinases against triple negative breast cancer (TNBC) cells. We demonstrated that cisplatin activates ATR, CHK1 and WEE1,...

متن کامل

Wee1 is required to sustain ATR/Chk1 signaling upon replicative stress

The therapeutic efficacy of nucleoside analogues, e.g. gemcitabine, against cancer cells can be augmented by inhibitors of checkpoint kinases, including Wee1, ATR, and Chk1. We have compared the chemosensitizing effect of these inhibitors in cells derived from pancreatic cancer, a tumor entity where gemcitabine is part of the first-line therapeutic regimens, and in osteosarcoma-derived cells. A...

متن کامل

Wee1 and Chk1 – crosstalk between key players in replicative stress

Replicative stress is a tumor cell-associated feature that includes the accumulation of stalled or collapsed replication forks. With the DNA polymerases lagging behind the helicases, these structures contain extended regions of single stranded DNA, leading to the activation of a damage signaling pathway that includes the kinases Ataxia Telangiectasia Mutated-Related (ATR) and Chk1. The specific...

متن کامل

Mangiferin induces cell cycle arrest at G2/M phase through ATR-Chk1 pathway in HL-60 leukemia cells.

This study aimed to determine the effect of mangiferin on the cell cycle in HL-60 leukemia cells and expression of the cell cycle-regulatory genes Wee1, Chk1 and CDC25C and to further investigate the molecular mechanisms of the antileukemic action of mangiferin. The inhibitory effect of mangiferin on HL-60 leukemia cell proliferation was determined by the MTT assay. The impact of mangiferin on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014